Cambridge Judge Business School

Cambridge Centre for Risk Studies

The economic impact of extreme space weather: Exploratory evidence

Edward Oughton 2nd May 2017

US Space Weather Workshop

Centre for Risk Studies

Presentation Overview

Background and motivation

Methodology

Results and conclusions

Standard Disclaimer

- The scenarios presented are not predictions
- They do not try to highlight any specific vulnerability in any power grid system
- Think of the work as exploring the sensitivity of the economy to the storm impact area
- This is a useful stress testing tool for risk management purposes

Context from the Regulator: PRA General Insurance Stress Test 2015

Background

Helios global insurance stress test

Academic paper

The academic paper is very different from the Helios Scenario

- Helios reflects the most extreme expert opinions on space weather
- It produces large numbers the most extreme scenario is a trillion dollar event
- The working paper is a more rigorous, scientific contribution
- It focuses on daily economic loss, avoiding the debate over temporality

Workshop: The Economics of Space Weather

Cambridge, 29th July 2015

Subject Matter Experts consulted in this process:

- Richard Horne (BAS)
- Helen Mason (Cantab)
- Alan Thomson (BGS)
- Trevor Gaunt (UCT)
- David Boteler (NRCan)
- Mark Clilverd (BAS)

This event gathered representatives from:

- Space physics
- Economics
- Catastrophe modelling
- Actuarial science
- Engineering
- Law
- Property, casualty and space insurance

Focus: GIC Risk to Electricity Transmission Infrastructure

Centre for

Risk Studies

Credit: NASA

EHV Transformers: Many Supply Chain Issues

Methodology

The methodology presented here flows sequentially through the following main steps:

- 1. Determining blackout zone by scenario;
- 2. Calculating the direct economic impact by state;
- Aggregating the direct economic impacts by state to national industry-specific impacts;
- 4. Estimating indirect domestic and global economic impact.

We focus on the USA for a number of reasons including absolute economic size, insurance penetration, regulatory emphasis etc.

Step 1: Blackout Zone by Scenario

States included in each scenario based on the geomagnetic latitude of the (weighted) population centre

Risk Studies

Judge Business School

Direct and Indirect Economic Impacts

Direct and Indirect Economic Impacts

Direct and Indirect Economic Impacts

Step 2: Calculating the Direct Economic Impact

Step 2: Calculating the Direct Economic Impact

Step 4: Estimating of indirect domestic and global economic impact

Classic Leontief IO model

$$\mathbf{x} = (\mathbf{I} - \mathbf{A})^{-1}\mathbf{y}$$

Supply-side Ghosh IO model

$$\mathbf{x} = \mathbf{v}(\mathbf{I} - \mathbf{B})^{-1}$$

$$\Delta \mathbf{x}_s^{\mathrm{up}} = (\mathbf{I} - \mathbf{A}^*)^{-1} \mathbf{A}_{:s} \Delta x_s$$

$$\Delta \mathbf{x}_s^{\text{down}} = \Delta x_s \mathbf{B}_{s:} (\mathbf{I} - \mathbf{B}^*)^{-1}$$

$$\Delta \mathbf{x}_{\scriptscriptstyle\mathcal{S}}^{fb} = \mathbf{A}_{\scriptscriptstyle\mathcal{S}:} (\mathbf{I} - \mathbf{A}^*)^{-1} \Delta \mathbf{x}_{\scriptscriptstyle\mathcal{S}}^{up} = \Delta \mathbf{x}_{\scriptscriptstyle\mathcal{S}}^{down} (\mathbf{I} - \mathbf{B}^*)^{-1} \mathbf{B}_{:\scriptscriptstyle\mathcal{S}}$$

$$\Delta \mathbf{x}^{\text{total,lb}} = \min_{\mathcal{S}} \left[\Delta \mathbf{x}^{\text{dir}}, \min_{\mathcal{S}} \Delta \mathbf{x}_{\mathcal{S}}^{\text{up}}, \min_{\mathcal{S}} \Delta \mathbf{x}_{\mathcal{S}}^{\text{down}}, \min_{\mathcal{S}} \Delta \mathbf{x}_{\mathcal{S}}^{\text{fb}} \right]$$

$$\Delta \mathbf{x}^{total,ub} = \Delta \mathbf{x}^{dir} + \sum_{s} \Delta \mathbf{x}_{s}^{up} + \sum_{s} \Delta \mathbf{x}_{s}^{down} + \sum_{s} \Delta \mathbf{x}_{s}^{fb}$$

Daily Economic Loss by Scenario

S1/S2 Impact by Industrial Sector

Centre for Risk Studies

S1/S2 Impact by International Supply Chain

Centre for Risk Studies

Conclusions of the Academic Paper

The direct economic cost incurred within the blackout zone only represents approximately half of the total potential macroeconomic cost

Cost-benefit analysis of investment in space weather forecasting and mitigation must take account of indirect domestic and international supply chain loss

Conclusions

Transparency leads to dialogue, debate and refinement of these estimates

Conclusions

The contribution of this paper includes:

- A tool for industry and government to understand potential daily loss
- 2. Kick-starting more dialogue between physicists, geophysicists, electrical engineers *and* economists, insurers, actuaries etc.
- 3. Framing space weather impact in monetary terms makes this accessible to a whole new audience who want to know the potential risk

Work in progress: Multi-region global scenarios

Centre for **Risk Studies**

